Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.281
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38630402

RESUMO

Biocontrol solutions (macroorganisms, microorganisms, natural substances, semiochemicals) are presented as potential alternatives to conventional plant protection products (PPPs) because they are supposed to have lower impacts on ecosystems and human health. However, to ensure the sustainability of biocontrol solutions, it is necessary to document the unintended effects of their use. Thus, the objectives of this work were to review (1) the available biocontrol solutions and their regulation, (2) the contamination of the environment (soil, water, air) by biocontrol solutions, (3) the fate of biocontrol solutions in the environment, (4) their ecotoxicological impacts on biodiversity, and (5) the impacts of biocontrol solutions compared to those of conventional PPPs. Very few studies concern the presence of biocontrol solutions in the environment, their fate, and their impacts on biodiversity. The most important number of results were found for the organisms that have been used the longest, and most often from the angle of their interactions with other biocontrol agents. However, the use of living organisms (microorganisms and macroorganisms) in biocontrol brings a specific dimension compared to conventional PPPs because they can survive, multiply, move, and colonize other environments. The questioning of regulation stems from this specific dimension of the use of living organisms. Concerning natural substances, the few existing results indicate that while most of them have low ecotoxicity, others have a toxicity equivalent to or greater than that of the conventional PPPs. There are almost no result regarding semiochemicals. Knowledge of the unintended effects of biocontrol solutions has proved to be very incomplete. Research remains necessary to ensure their sustainability.

2.
Glob Chang Biol ; 30(4): e17254, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556898

RESUMO

Freshwaters are highly threatened ecosystems that are vulnerable to chemical pollution and climate change. Freshwater taxa vary in their sensitivity to chemicals and changes in species composition can potentially affect the sensitivity of assemblages to chemical exposure. Here we explore the potential consequences of future climate change on the composition and sensitivity of freshwater macroinvertebrate assemblages to chemical stressors using the UK as a case study. Macroinvertebrate assemblages under end of century (2080-2100) and baseline (1980-2000) climate conditions were predicted for 608 UK sites for four climate scenarios corresponding to mean temperature changes of 1.28 to 3.78°C. Freshwater macroinvertebrate toxicity data were collated for 19 chemicals and the hierarchical species sensitivity distribution model was used to predict the sensitivity of untested taxa using relatedness within a Bayesian approach. All four future climate scenarios shifted assemblage compositions, increasing the prevalence of Mollusca, Crustacea and Oligochaeta species, and the insect taxa of Odonata, Chironomidae, and Baetidae species. Contrastingly, decreases were projected for Plecoptera, Ephemeroptera (except for Baetidae) and Coleoptera species. Shifts in taxonomic composition were associated with changes in the percentage of species at risk from chemical exposure. For the 3.78°C climate scenario, 76% of all assemblages became more sensitive to chemicals and for 18 of the 19 chemicals, the percentage of species at risk increased. Climate warming-induced increases in sensitivity were greatest for assemblages exposed to metals and were dependent on baseline assemblage composition, which varied spatially. Climate warming is predicted to result in changes in the use, environmental exposure and toxicity of chemicals. Here we show that, even in the absence of these climate-chemical interactions, shifts in species composition due to climate warming will increase chemical risk and that the impact of chemical pollution on freshwater macroinvertebrate biodiversity may double or quadruple by the end of the 21st century.


Assuntos
Ecossistema , Poluentes Ambientais , Animais , Teorema de Bayes , Biodiversidade , Poluição Ambiental , Invertebrados , Rios
3.
Mar Genomics ; 75: 101109, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38603950

RESUMO

In an era of unprecedented industrial and agricultural growth, metal contamination in marine environments is a pressing concern. Sentinel organisms such as the mangrove oyster Crassostrea gasar provide valuable insights into these environments' health. However, a comprehensive understanding of the molecular mechanisms underlying their response to metal exposure remains elusive. To address this gap, we reanalyzed the 454-sequencing data of C. gasar, utilizing an array of bioinformatics workflow of CDTA (Combined De Novo Transcriptome Assembly) to generate a more representative assembly. In parallel, C. gasar individuals were exposed to two concentrations of zinc (850 and 4500 µg L-1 Zn) for 48 h to understand their molecular responses. We utilized Trinotate workflow for the 11,684-CDTA unigenes annotation, with most transcripts aligning with the genus Crassostrea. Our analysis indicated that 67.3% of transcript sequences showed homology with Pfam, while 51.4% and 54.5%, respectively had GO and KO terms annotated. We identified potential metal pollution biomarkers, focusing on metal-related genes, such as those related to the GSH biosynthesis (CHAC1 and GCLC-like), to zinc transporters (ZNT2-like), and metallothionein (MT-like). The evolutionary conservation of these genes within the Crassostrea genus was assessed through phylogenetic analysis. Further, these genes were evaluated by qPCR in the laboratory exposed oysters. All target genes exhibited significant upregulation upon exposure to Zn at both 850 and 4500 µg L-1, except for GCLC-like, which showed upregulation only at the higher concentration of 4500 µg L-1. This result suggests distinct activation thresholds and complex interactions among these genes in response to varying Zn concentrations. Our study provides insights into the molecular responses of C. gasar to Zn, adding valuable tools for monitoring metal pollution in marine ecosystems using the mangrove oyster as a sentinel organism.

4.
Bioresour Technol ; 400: 130670, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583679

RESUMO

The incorporation of representative commercial compostable materials into a full-scale open-air windrow composting process in an industrial site using household-separated biowaste was investigated. Two batches out of the same initial biowaste mixture were studied, one as control and the other containing initially 1.28 wt% of certified compostable plastics. No significant differences in the composting process were revealed. Compostable plastics exhibited a 98 wt% mass loss after 4 months, aligning with industrial composting times. The evolution of the morphology of the materials unveiled polymer specific degradation mechanisms. Both Safety requirements for organic farming were met. Ecotoxicity tests showed no adverse effects, agronomic fertilizing and amending quality was high, the materials compost even enhancing barley growth. The ecological impact assessment demonstrated an advantage for composting over incineration for seven of the eight indicators. In conclusion, this study shows the successful integration of compostable materials into industrial composting, upholding product safety and quality.

5.
Environ Int ; 186: 108607, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38593686

RESUMO

Practical, legal, and ethical reasons necessitate the development of methods to replace animal experiments. Computational techniques to acquire information that traditionally relied on animal testing are considered a crucial pillar among these so-called new approach methodologies. In this light, we recently introduced the Bio-QSAR concept for multispecies aquatic toxicity regression tasks. These machine learning models, trained on both chemical and biological information, are capable of both cross-chemical and cross-species predictions. Here, we significantly extend these models' applicability. This was realized by increasing the quantity of training data by a factor of approximately 20, accomplished by considering both additional chemicals and aquatic organisms. Additionally, variable test durations and associated random effects were accommodated by employing a machine learning algorithm that combines tree-boosting with mixed-effects modeling (i.e., Gaussian Process Boosting). We also explored various biological descriptors including Dynamic Energy Budget model parameters, taxonomic distances, as well as genus-specific traits and investigated the inclusion of mode-of-action information. Through these efforts, we developed Bio-QSARs for fish and aquatic invertebrates with exceptional predictive power (R squared of up to 0.92 on independent test sets). Moreover, we made considerable strides to make models applicable for a range of use cases in environmental risk assessment as well as research and development of chemicals. Models were made fully explainable by implementing an algorithmic multicollinearity correction combined with SHapley Additive exPlanations. Furthermore, we devised novel approaches for applicability domain construction that take feature importance into account. We are hence confident these models, which are available via open access, will make a significant contribution towards the implementation of new approach methodologies and ultimately have the potential to support "Green Chemistry" and "Green Toxicology".

6.
Plants (Basel) ; 13(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38592875

RESUMO

Thiamethoxam, a second-generation neonicotinoid insecticide is widely used for controlling sap-sucking insect pests including Rhopalosiphum padi. The current study aimed to investigate the life-history parameters and feeding behavior of R. padi following treatments with sublethal concentrations of thiamethoxam. The lethal concentration 50 (LC50) value of thiamethoxam against adult R. padi was 11.458 mg L-1 after 48 h exposure. The sublethal concentrations of thiamethoxam (LC5 and LC10) significantly decreased the adult longevity, fecundity, and reproductive days in the directly exposed aphids (F0 generation). In the progeny R. padi (F1), the developmental durations and total prereproductive period (TPRP) were decreased while the adult longevity, fecundity, and reproductive days (RPd) were increased at both thiamethoxam concentrations. The demographic parameters including the net reproductive rate (R0), intrinsic rate of increase (r), and finite rate of increase (λ) were prolonged only at the LC5 of thiamethoxam. The EPG results indicated that the sublethal concentrations of thiamethoxam increases the total duration of non-probing (Np) while reducing the total duration of E2 in directly exposed aphids (F0). Interestingly, the E2 were significantly increased in the progeny generation (F1) descending from previously exposed parental aphids (F0). Overall, this study showed that thiamethoxam exhibited high toxicity against directly exposed individuals (F0), while inducing intergenerational hormetic effects on the progeny generation (F1) of R. padi. These findings provided crucial details about thiamethoxam-induced hormetic effects that might be useful in managing resurgences of this key pest.

7.
Aquat Toxicol ; 270: 106905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569307

RESUMO

The enhanced adsorption of pollutants on biofilm-developed microplastics has been proved in many studies, but the ecotoxicological effects of biofilm-developed microplastics on organisms are still unclear. In this study, adult zebrafish were exposed to original microplastics, biofilm-developed microplastics, original microplastics absorbed with oxytetracycline (OTC), and biofilm-developed microplastics absorbed with OTC for 30 days. The intestinal histological damage, intestinal biomarker response, gut microbiome and antibiotic resistance genes (ARGs) profile of zebrafish were measured to explore the roles of biofilm in the effects of microplastics. The results showed that biofilm-developed microplastics significantly increased the number of goblet cells in intestinal epithelium compared with the control group. The biofilm-developed microplastics also induced the oxidative response in the zebrafish intestines, and biofilm changed the response mode in the combined treatment with OTC. Additionally, the biofilm-developed microplastics caused intestinal microbiome dysbiosis, and induced the abundance of some pathogenic genera increasing by several times compared with the control group and the original microplastics treatments, regardless of OTC adsorption. Furthermore, the abundance of ARGs in biofilm-developed microplastics increased significantly compared with the control and the original microplastic treatments. This study emphasized the significant influence and unique role of biofilm in microplastic studies.


Assuntos
Oxitetraciclina , Poluentes Químicos da Água , Animais , Oxitetraciclina/toxicidade , Microplásticos/toxicidade , Plásticos , Peixe-Zebra , Poluentes Químicos da Água/toxicidade , Antibacterianos/toxicidade , Intestinos
8.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617222

RESUMO

Contaminant exposure can harm wildlife. However, measuring contaminant exposure in wildlife can be challenging due to accessibility of species and/or sampling tissue matrices needed to answer research questions regarding exposure. For example, in bats and other taxa that roost, it may be best to collect pooled feces from colonies for minimal disturbance to species of conservation concern, but fecal contaminant concentrations do not provide contaminant bioaccumulation estimates. Thus, there is a need for quantifying relationships between sample matrices for measuring contaminant exposure to answer research questions pertaining to wildlife health and addressing conservation needs. Our goal was to determine relationships between fecal and fur total mercury (THg). To do so, we collected paired feces and fur from Mexican free-tailed bats (Tadarida brasiliensis) in summer 2023 in western Oklahoma at a maternity roost with no known Hg point source. We analyzed THg in each sample matrix for each individual (n = 48). We found no relationship between individual fecal and fur THg. However, when averaged, fur THg was 6.11 times greater than fecal THg. This factor can be used as a screening-level risk assessment of under-roost feces, which could then be followed by direct assessments of fur THg concentrations and health impacts. We encourage the use of this conversion factor across other insectivorous bat species and sites for estimating initial risks of contaminant exposure with minimal disturbance to species of conservation concern, when timely research for conservation actions are needed, and when a contaminant point source is not yet known.

9.
Sci Total Environ ; 928: 172389, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615763

RESUMO

PFAAs (Perfluoroalkyl acids) are a class of bioaccumulative, persistent and ubiquitous environmental contaminants which primarily occupy the hydrosphere and its sediments. Currently, a paucity of toxicological information exists for short chain PFAAs and complex mixtures. In order to address these knowledge gaps, we performed a 3-week, aqueous exposure of rainbow trout to 3 different concentrations of a PFAA mixture (50, 100 and 500 ng/L) modeled after the composition determined in Lake Ontario. We conducted an additional set of exposures to individual PFAAs (25 nM each of PFOS (12,500 ng/L), PFOA (10,300 ng/L), PFBS (7500 ng/L) or PFBA (5300 ng/L) to evaluate differences in biological response across PFAA congeners. Untargeted proteomics and phosphorylated metabolomics were conducted on the blood plasma and head kidney tissue to evaluate biological response. Plasma proteomic responses to the mixtures revealed several unexpected outcomes including Similar proteomic profiles and biological processes as the PFOS exposure regime while being orders of magnitude lower in concentration and an atypical dose response in terms of the number of significantly altered proteins (FDR < 0.1). Biological pathway analysis revealed the low mixture, medium mixture and PFOS to significantly alter (FDR < 0.05) a number of processes including those involved in lipid metabolism, oxidative stress and the nervous system. We implicate plasma increases in PPARD and PPARG as being directly related to these biological processes as they are known to be important regulators in all 3 processes. In contrast to the blood plasma, the high mixture and PFOA exposure regimes caused the greatest change to the head kidney proteome, altering many proteins being involved in lipid metabolism, oxidative stress and inflammation. Our findings support the pleiotropic effect PFAAs have on aquatic organisms at environmentally relevant doses including those on PPAR signaling, metabolic dysregulation, immunotoxicity and neurotoxicity.

10.
Sci Total Environ ; : 172521, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641095

RESUMO

Agricultural practitioners, researchers and policymakers are increasingly advocating for integrated pest management (IPM) to reduce pesticide use while preserving crop productivity and profitability. Using selective pesticides, putatively designed to act on pests while minimising impacts on off-target organisms, is one such option - yet evidence of whether these chemicals control pests without adversely affecting natural enemies and other beneficial species (henceforth beneficials) remains scarce. At present, the selection of pesticides compatible with IPM often considers a single (or a limited number of) widely distributed beneficial species, without considering undesired effects on co-occurring beneficials. In this study, we conducted standardised laboratory bioassays to assess the acute toxicity effects of 20 chemicals on 15 beneficial species at multiple exposure timepoints, with the specific aims to: (1) identify common and diverging patterns in acute toxicity responses of tested beneficials; (2) determine if the effect of pesticides on beetles, wasps and mites is consistent across species within these groups; and (3) assess the impact of mortality assessment timepoints on International Organisation for Biological Control (IOBC) toxicity classifications. Our work demonstrates that in most cases, chemical toxicities cannot be generalised across a range of beneficial insects and mites providing biological control, a finding that was found even when comparing impacts among closely related species of beetles, wasps and mites. Additionally, we show that toxicity impacts increase with exposure length, pointing to limitations of IOBC protocols. This work challenges the notion that chemical toxicities can be adequately tested on a limited number of 'representative' species; instead, it highlights the need for careful consideration and testing on a range of regionally and seasonally relevant beneficial species.

11.
Sci Total Environ ; : 172526, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636866

RESUMO

Pesticide contamination poses a significant threat to non-target wildlife, including amphibians, many of which are already highly threatened. This study aims to assess the extent of pesticide exposure in dead frogs collected during a mass mortality event across eastern New South Wales, Australia between July 2021 and March 2022. Liver tissue from 77 individual frogs of six species were analysed for >600 legacy and contemporary pesticides, including rodenticides. More than a third (36 %) of the liver samples contained at least one pesticide, including brodifacoum, dieldrin, DDE, heptachlor/heptachlor epoxide, fipronil sulfone, and 2-methyl-4-chlorophenoxyacetic acid (MCPA). Brodifacoum, a second-generation anticoagulant rodenticide, was found in four of the six frog species analysed: the eastern banjo frog (Limnodynastes dumerilii), cane toad (Rhinella marina), green tree frog (Litoria caerulea) and Peron's tree frog (Litoria peronii). This is the first report of anticoagulant rodenticide detected in wild amphibians, raising concerns about potential impacts on frogs and extending the list of taxa shown to accumulate rodenticides. Dieldrin, a banned legacy pesticide, was also detected in two species: striped marsh frog (Limnodynastes peronii) and green tree frog (Litoria caerulea). The toxicological effects of these pesticides on frogs are difficult to infer due to limited comparable studies; however, due to the low frequency of detection the presence of these pesticides was not considered a major contributing factor to the mass mortality event. Additional research is needed to investigate the effects of pesticide exposure on amphibians, particularly regarding the impacts of second-generation anticoagulant rodenticides. There is also need for continued monitoring and improved conservation management strategies for the mitigation of the potential threat of pesticide exposure and accumulation in amphibian populations.

12.
Sci Total Environ ; 927: 172072, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38575033

RESUMO

The use of biomarkers in fish for biomonitoring is a valuable approach to reveal effects of human impacts on biota health. Top predator fish are effective models for monitoring human activities' impacts on aquatic ecosystems. The Guaraguaçu River is the largest river-system on coastal region of South Brazil and a World Heritage site. The river receives contaminants from disorderly urban growth, including discharges of domestic sewage and small fishery boats, particularly during the tourist season. Our study aimed to assess impact of anthropogenic activities on water quality in the Guaraguaçu River by analyzing environmental contamination biomarkers in the top fish predator Hoplias malabaricus. Fish were collected using a fyke net trap across sectors representing a gradient of anthropic impact: sector 1 - pristine; sector 2 - impacted; and sector 3 - less impacted. Water samples were collected to analyze the presence of trace elements and pesticide. Biomarkers of the antioxidant system, histopathology, genotoxicity, neurotoxicity, and concentration of trace elements were analyzed in fish tissues. In water samples Al, Fe and Mn were detected, but no pesticides were found. In fish muscle, zinc and iron were detected. Brain acetylcholinesterase activity decreased in impacted sectors, indicating neurotoxic effects. The antioxidant system increased activity in gills and liver, and damage from lipoperoxidation was observed, particularly in sector 2 when compared to sector 1, suggesting oxidative stress. Histopathological biomarkers revealed lesions in the liver and gills of fish in impacted sectors. Micronuclei, a genotoxicity biomarker, were observed in organisms from all sectors. Our results demonstrate detrimental effects of poor water quality on biota health, even when contaminants are not detected in water.

13.
Sci Total Environ ; 927: 172373, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604356

RESUMO

Wastewater treatment wetlands are cost-effective strategies for remediating trace metals in industrial effluent. However, biogeochemical exchange between wastewater treatment wetlands and adjacent environments provides opportunities for trace metals to cycle in surrounding ecosystems. The transfer of trace metals to wildlife inhabiting treatment wetlands must be considered when evaluating wetland success. Using passerine birds as bioindicators, we conducted a multi-tissue analysis to investigate the mobilization of zinc, copper, and lead derived from wastewater to terrestrial wildlife in treatment wetlands and surrounding habitat. In addition, we evaluate the strength of relationships between metal concentrations in non-lethal (blood and feathers) and lethal (muscle and liver) sample types for estimation of toxicity risk. From July 2020 to August 2021, 177 passerines of seven species were captured at two wetlands constructed to treat industrial wastewater and two reference wetlands in the coastal plain of South Carolina. Feather, blood, liver, and muscle samples from each bird were analyzed for fourteen metals using inductively coupled plasma mass spectrometry and direct mercury analysis. Passerines inhabiting wastewater treatment wetlands accumulated higher concentrations of zinc in liver, copper in blood, and lead in feathers than passerines in reference wetlands, but neither blood nor feather concentrations were correlated with internal tissue concentrations. Of all the detected metals, only mercury in the blood showed a strong predictive relationship with mercury in internal tissues. This study indicates that trace metals derived from wastewater are bioavailable and exported to terrestrial wildlife and that passerine biomonitoring is a valuable tool for assessing metal transfer from treatment wetlands. Regular blood sampling can reveal proximate trace metal exposure but cannot predict internal body burdens for most metals.

14.
Ecotoxicology ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602608

RESUMO

The annual killifish Austrolebias charrua is an endangered species, endemic to the southern region of South America, which inhabits temporary ponds that emerges in the rainy season. The main anthropogenic threat driving the extinction of A. charrua stems from extensive agriculture, primarily due to the widrespread use of glyphosate-based herbicides near their habitats. Annual killifishes have been used as models for ecotoxicological studies but, up to now, there are no studies about reference genes in any Austrolebias species. This represents an obstacle to the use of qPCR-based technologies, the standard method for gene expression quantification. The present study aimed to select and validate potential reference genes for qPCR normalization in the annual killifish Austrolebias charrua considering different tissues, gender and environmental conditions. The candidate reference genes 18 s, actb, gapdh, ef1a, shox, eif3g, and the control gene atp1a1 were evaluated in male and female individuals in three different tissues (brain, liver, and gills) under two experimental conditions (control and acute exposition to Roundup Transorb®). The collected tissues were submitted to RNA extraction, followed by cDNA synthesis, cloning, sequencing, and qPCR. Overall, 18 s was the most stable reference gene, and 18 s and ef1a were the most stable combination. Otherwise, considering all variables, gapdh and shox were the least stable candidate genes. Foremost, suitable reference genes were validated in A. charrua, facilitating accurate mRNA quantification in this species, which might be useful for developing molecular tools of ecotoxicological assessment based on gene expression analysis for environmental monitoring of annual killifish.

15.
Evol Appl ; 17(3): e13668, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38524683

RESUMO

The increasing application of road deicing agents (e.g., NaCl) has caused widespread salinization of freshwater environments. Chronic exposure to toxic NaCl levels can impact freshwater biota at genome to ecosystem scales, yet the degree of harm caused by road salt pollution is likely to vary among habitats and populations. The background ion chemistry of freshwater environments may strongly impact NaCl toxicity, with greater harm occurring in ion-poor, soft water conditions. In addition, populations exposed to salinization may evolve increased NaCl tolerance. Notably, if organisms are adapted to the water chemistry of their natal environment, toxicity responses may also vary among populations in a given test medium. We examined the potential for this evolutionary and environmental context to interact in shaping NaCl toxicity with a pair of laboratory reciprocal transplant toxicity experiments, using natural populations of the water flea Daphnia ambigua collected from three lakes that vary in ion availability and composition. We observed a strong effect of the lake water environment on NaCl toxicity in both trials. NaCl caused a much greater decline in reproduction and r in lake water from a low-ion/calcium-poor environment (20 µS/cm specific conductance; 1.7 mg/L Ca2+) compared with water from both a Ca2+-rich lake (55 µS/cm; 7.2 mg/L Ca2+) and an ion-rich coastal lake (420 µS/cm; 3.4 mg/L Ca2+). Daphnia from this coastal lake were most robust to the effects of NaCl on reproduction and r. A significant interaction between the population and lake water environment shaped survival in both trials, suggesting that local adaptation to the test waters used may have contributed to toxicity responses. Our findings that the lake water environment, adaptation to that environment, and adaptation to a contaminant of interest may shape toxicity demonstrate the importance of considering environmental and biological complexity in mitigating pollution impacts.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38483089

RESUMO

The Organisation for Economic Co-operation and Development (OECD) 216 test guideline investigates the impact of agrochemicals on soil nitrogen transformation. After an evaluation of 465 OECD 216 studies, we describe two distinct yet contrasting outcomes in control nontreated samples that are possible in this testing framework, which we term the "rise" (consistent increases in nitrate concentrations throughout the test period) and "dip" (initial decline in nitrate concentration between Days 0-7, followed by a net-generation of nitrate across Days 7-28) responses. We raise significant concerns that control data from standardized, internationally recognized test guidelines can demonstrate such dissimilar patterns. We propose that, when present, the dip response undermines the intended functioning of the test system and removes the ability to draw appropriate ecotoxicological inferences from the data. In this work, we hypothesize the dip response is a product of conducting the study in low nitrogen content soils. Our results indicate that the dip response can be alleviated by using ammonium sulfate as an immediately available inorganic nitrogen source in place of the guideline-mandated complex, organic lucerne meal, demonstrating the influence of nitrogen availability and accessibility. However, not all low nitrogen soils exhibited the dip response, indicating the involvement of additional unidentified factors. Using our data and real-world regulatory examples, we advocate that datasets displaying the dip response should not be considered valid OECD 216 studies due to the influence of soil properties precluding an assessment of whether any impacts observed are driven solely by the test compound in question or are instead a product of the soil used. We propose methods to account for these soil-specific responses that could be integrated into the conduct and interpretation of OECD 216 studies. Such amendments will improve the reliability and robustness of the study system and enhance confidence in ecotoxicological conclusions derived from OECD 216 datasets. Integr Environ Assess Manag 2024;00:1-14. © 2024 SETAC.

17.
Front Toxicol ; 6: 1334169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465195

RESUMO

Introduction: The exploitation of anthracite A in the Pejão mining complex (Douro Coalfield, North Portugal) resulted in the formation of several coal waste piles without proper environmental control. In 2017, a new pedological zonation emerged in the Fojo area, after the ignition and self-burning of some of the coal waste piles, namely: unburned coal waste (UW); burned coal waste, and a cover layer (BW and CL, respectively); uphill soil (US); mixed burned coal waste (MBW); downhill soil (DS). This study aimed to evaluate the toxic effects of 25 soil elutriates from different pedological materials. Methods: Allivibrio fischeri bioluminescence inhibition assay, Lemna minor growth inhibition assay, and Daphnia magna acute assay were used to assess the toxicity effects. Additionally, total chlorophyll and malondialdehyde (MDA) content and catalase (CAT) activity were also evaluated in L. minor. Results and Discussion: The results obtained from each endpoint demonstrated the extremely heterogeneous nature of soil properties, and the species showed different sensibilities to soil elutriates, however, in general, the species showed the same sensitivity trend (A. fischeri > L. minor > D. magna). The potentially toxic elements (PTE) present in the soil elutriates (e.g., Al, Pb, Cd, Ni, Zn) affected significantly the species understudy. All elutriates revealed toxicity for A. fischeri, while US1 and UW5 were the most toxic for L. minor (growth inhibition and significant alterations in CAT activity) and D. magna (100% mortality). This study highlights the importance of studying soil aqueous phase toxicity since the mobilization and percolation of bioavailable PTE can cause environmental impacts on aquatic ecosystems and biota.

18.
Sci Total Environ ; 926: 172019, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547980

RESUMO

The widespread application of herbicides raises concerns about their impact on non-target aquatic organisms. This study aimed to evaluate the toxicity of a commercially available herbicide formulation containing Bromoxynil+MCPA (2-Methyl-4-chlorophenoxyacetic acid) on Cirrhinus mrigala (economically significant fish). A total of 210 juvenile fish were subjected to a triplicate experimental setup, with 70 fish allocated to each replicate, exposed to seven different concentrations of herbicide: 0 mg/L, 0.133 mg/L, 0.266 mg/L, 0.4 mg/L, 0.5 mg/L, 0.66 mg/L, and 0.8 mg/L, respectively, for a duration of 96 h. The median lethal concentration (LC50) was determined to be 0.4 mg/L. Significant hematological alterations were observed, including decreases in RBC counts, hemoglobin, hematocrit, and lymphocyte counts, along with an increase in erythrocyte indices. Biochemical analysis revealed elevated levels of neutrophils, WBCs, bilirubin, urea, creatinine, ALT, AST, ALP, and glucose in treated groups. Morphological abnormalities in erythrocytes and histopathological changes in gills, liver, and kidneys were noted. Pathological alterations in gills, liver and kidneys including epithelial cell uplifting, lamellar fusion, hepatolysis, and renal tubule degeneration were observed. Oxidative stress biomarkers such as TBARS (Thiobarbituric Acid Reactive Substance), ROS (Reactive Oxygen Species), and POD (Peroxides) activity increased, while antioxidant enzymatic activities decreased as toxicant doses increased from low to high concentrations. The study reveals that Bromoxynil+MCPA significantly disrupts physiological and hematobiochemical parameters in Cirrhinus mrigala, which highlights the substantial aquatic risks. In conclusion, the herbicide formulation induced significant alterations in various fish biomarkers, emphasizing their pivotal role in assessing the environmental impact of toxicity. This multi-biomarker approach offers valuable insights regarding the toxicological effects, thereby contributing substantially to the comprehensive evaluation of environmental hazards.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Cyprinidae , Herbicidas , Poluentes Químicos da Água , Animais , Herbicidas/toxicidade , Ácido 2-Metil-4-clorofenoxiacético/toxicidade , Nitrilas , Biomarcadores , Fígado , Brânquias/patologia , Poluentes Químicos da Água/toxicidade
19.
Environ Toxicol Pharmacol ; 107: 104420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499263

RESUMO

Endocrine disruptors chemicals (EDCs) pose significant health risks, including cancer, behavioral disorders, and infertility. In this study, we employed the photoelectrocatalysis (PEC) technique with optimized tungsten oxide (WO3) nanostructures as a photoanode to degrade three diverse EDCs: methiocarb, dimethyl phthalate, and 4-tert-butylphenol. PEC degradation tests were carried out for individual contaminants and a mixture of them, assessing efficiency across different EDC families. Ultra High-Performance Liquid Chromatography and Mass Spectrometry was used to control the course of the experiments. For individual solutions, 4-tert-butylphenol and methiocarb were 100% degraded at 1 hour of PEC degradation. Among the tested EDCs, dimethyl phthalate showed the highest resistance to degradation when treated individually. However, when assessed in a mixture with the other EDCs, the degradation efficiency of dimethyl phthalate increased compared to its individual treatment. Furthermore, four degradation intermediates were identified for each contaminant. Finally, toxicity tests revealed that the initial solution was more toxic than the samples treated for all the contaminants tested, except for the phthalate.


Assuntos
Disruptores Endócrinos , Metiocarb , Fenóis , Ácidos Ftálicos , Humanos , Disruptores Endócrinos/toxicidade , Espectrometria de Massas em Tandem/métodos
20.
J Hazard Mater ; 470: 134099, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547754

RESUMO

The response of the meta-metabolome is rarely used to characterize the effects of contaminants on a whole community. Here, the meta-metabolomic fingerprints of biofilms were examined after 1, 3 and 7 days of exposure to five concentrations of cobalt (from background concentration to 1 × 10-5 M) in aquatic microcosms. The untargeted metabolomic data were processed using the DRomics tool to build dose-response models and to calculate benchmark-doses. This approach made it possible to use 100% of the chemical signal instead of being limited to the very few annotated metabolites (7%). These benchmark-doses were further aggregated into an empirical cumulative density function. A trend analysis of the untargeted meta-metabolomic feature dose-response curves after 7 days of exposure suggested the presence of a concentration range inducing defense responses between 1.7 × 10-9 and 2.7 × 10-6 M, and of a concentration range inducing damage responses from 2.7 × 10-6 M and above. This distinction was in good agreement with changes in the other biological parameters studied (biomass and chlorophyll content). This study demonstrated that the molecular defense and damage responses can be related to contaminant concentrations and represents a promising approach for environmental risk assessment of metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA